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GET is capable of incorporating uncertainty albeit a little
awkwardly.

We focus on a pure exchange economy.

The way to do this is to introduce states of the world
S = {s1, ...,sR}.

Consumer h evaluates that state si comes about with
probability πhi .

The basic innovation is to regard, say, a loaf of bread in two
di�erent states as two di�erent commodities.

This means that consumption bundles and allocations are
indexed by the states and become really long.
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De�nition

A state contingent commodity vector/bundle
x = (x11, ...,xL1, ...,x1R , ...,xLR) ∈ RLR

+ provides a consumer bundle
(x1s , ...,xLs) ∈ RL

+ in state s ∈ S .

Notice that above is a description of a contingent bundle for a
consumer.

An allocation, a bundle for each consumer, is an element of
RLRH
+ .

Consumer h has endowment
ωh = (ω11h, ...,ωL1h, ...,ω1Rh, ...,ωLRh).

Preferences are de�ned over contingent commodity bundles.
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The consumer has a Bernoulli-utility function for each state
and evaluates bundles by weighing the states by their
probabilities so that xh �h x

′
h if and only if

∑
s∈S

πshush (x1sh, ...,xLsh)≥ ∑
s∈S

πshush
(
x ′
1sh, ...,x

′
Lsh

)

Formally, the economy with states and state contingent
commodities is equivalent to the standard version, and all the
results we have there remain true.

In particular, Walras-equilibria exist and they are
Pareto-e�cient.

When the Bernoulli-utility functions are concave we
immediately see that in equilibrium there is e�cient risk
sharing.
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Information

Think of information becoming more and more accurate with
time, and to model this assume that there are dates
t ∈ {0,1, ...,T}.

A partition of a set A is a collection of sets {Ai}ni=1
such that

Ai ∩Aj = /0 when i 6= j , and ∪ni=1
Ai = A.

When A = S the subsets of S , Si = Ai , are called events, and
a partion L of S is called an information structure.

When s,s ′ ∈ Si then an agent regards it as possible that the
state of the world is s as well as s ′.

Information revelation is modelled by a sequence of
information structures (L0,L1, ...,LT ) such that if Q ∈Lt

then there exists R ∈Lt−1 such that Q ⊆ R .
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Each consumer could have his/her own information structure
but to keep notation from exploding we assume that they have
a common sequence of information structures.

A pair (t,E ) where E ∈Lt is called a date-event.

There are L commodities and now we denote contingent
commodities by index lt meaning that commodity l is available
at date t.

We still need to index the commodities by states so xlts is the
amount of commodity l available at date t in state s (along
with other states that belong to the same event).
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We can de�ne the double-indexed commodities, of which there
are L(T +1), as our new commodities, and then everything is
as in the standard setting.

The only thing we have to take care is that bundles and
allocations are measurable, i.e., if s,s ′ ∈ Si then xlts = xlts ′ .

This way the above temporal structure can be made atemporal,
and the economy is formally like the standard setting.

The equilibrium of this economy is called the Arrow-Debreu
equilibrium.
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De�nition

Arrow-Debreu equilibrium consists of allocation
x∗ = (x∗

1
,x∗

2
, ...,x∗H) ∈ RLRH

+ ,
x∗h = (x∗

11h, ...,x
∗
L1h, ...,x

∗
1Rh...,x

∗
LRh) ∈ RLR

+ , and a system of prices
p = (p11, ...,pL1, ...,p1R , ...,pLR) ∈ RLR

+ such that
i) for every h x∗h is the maximal element in the budget set{
xh ∈ RLR

+ : pxh ≤ pωh

}
and

ii) markets clear ∑
H
h=1

x∗h = ∑
H
h=1

ωh.
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Radner-equilibrium

In the Arrow-Debreu economy there are markets for all
contingent commodities, and trading happens before any of
the uncertainty is resolved.

Assume that at t = 0 the agents can trade just one commodity
but then at the succeeding dates there are spotmarkets at each
state.

Now only S forward markets exist (one for each state) in the
one commodity that is traded at t = 0.

To proceed we need to postulate that the agents have
(correct) expectations about the spot prices at time t = 1.

The expected price at state s is denoted by ps = (p1s , ...,pLs)
and the expected vector of prices is p = (ps1 , ...,psR ).

At time t = 0 there is contingent trade in good 1, and its
prices are given by q = (qs1 , ...,qsR ).
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Given the prices consumer h makes a consumption plan for
contingent commodities (zs1h, ...,zsRh) ∈ RR and for spot
markets (xs1h, ...,xsRh) where one has to be careful with
notation as xsh = (x1sh, ...,xLsh) ∈ RL

+.

The consumer's problem is given by

max
(zs1h, ...,zsRh) ∈ RR

(xs1h, ...,xsRh) ∈ RLR
+

Uh (xs1h, ...,xsRh)

s.t.
∑s∈S qszsh ≤ 0

psxsh ≤ psωsh +p1szsh
∀s ∈ S

The �rst budget constraint does not restrict much; it is well
possible that, say, zs1h <−ω1s1h.

In this case the consumer sells short and has to acquire
su�cient amount of good 1 in the spot market to honour
his/her commitments.

The requirement of positive consumption (i.e., wealth) at each
state guarantees that things do not get out of control.
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De�nition

A Radner-equilibrium consists of prices at time t = 0 for contingent
�rst good commodities q = (qs1 , ...,qsR ) and spot prices
p = (ps1 , ...,psR ) at time t = 1, for each consumer h consumption

plan
(
z∗s1h, ...,z

∗
sRh

)
at time t = 0, and consumption plan(

x∗s1h, ...,x
∗
sRh

)
at time t = 1 such that the consumption plans solve

the above maximisation problem, and ∑h∈H z∗sh ≤ 0 and

∑h∈H x∗sh ≤ ∑h∈H ωsh for each s ∈ S .
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Theorem

i) Assume that an Arrow-Debreu equilibrium is given by allocation

x∗ ∈ RLRH
+ and a contingent commodity prices

p = (ps1 , ...,psR ) ∈ RLR
++. There are prices q = (qs1 , ...,qsR ) ∈ RR

++

for the contingent commodity-1 and consumption plans

z∗ = (z∗
1
, ...,z∗H) ∈ RRH such that the consumption plans x∗, z∗ and

prices q and p constitute a Radner-equilibrium.

ii) If prices q = (qs1 , ...,qsR ) ∈ RR
++ for the contingent commodity-1

and spot prices p = (ps1 , ...,psR ) ∈ RLR
++, and consumption plans

z∗ = (z∗
1
, ...,z∗H) ∈ RRH and x∗ ∈ RLRH

+ constitute a

Radner-equilibrium then there are multipliers (µs1 , ...,µsR ) ∈ RR
++

such that allocation x∗ and the contingent commodities prices

(µs1ps1 , ...,µsRpsR ) ∈ RR
++ constitute an Arrow-Debreu equilibrium.
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Proof.

i) A good guess is to make qs = p1s for each s ∈ S . Let us next
compare the budget sets of consumer h under Arrow-Debreu prices
and Radner-prices. The Arrow-Debreu budget set is
BAD
h =

{
(xs1h, ...,xsRh) ∈ RLR

+ : ∑s∈S ps (xsh−ωsh)≤ 0
}
while the

Radner budget set is
BR
h =

{
(xs1h, ...,xsRh) ∈ RLR

+ : ∃(zs1h, ...,zsRh) ∈ RR s.t.

∑
s∈S

qszsh ≤ 0and ps (xsh−ωsh)≤ p1szsh, ∀s ∈ S

}
Assume that xh ∈ BAD

h , and let zsh = 1

p1s
ps (xsh−ωsh). Now

∑s∈S qszsh = ∑s∈S ps (xsh−ωsh)≤ 0 and ps (xsh−ωsh) = p1szsh for
all s ∈ S . This shows that BAD

h ⊆ BR
h .
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Proof.

Assume that xh ∈ BR
h . This means that there exists (zs1h, ...,zsRh)

such that ∑s∈S qszsh ≤ 0 and ps (xsh−ωsh)≤ p1szsh for all s ∈ S .
Summing the latter inequality over the states yields

∑s∈S ps (xsh−ωsh)≤ ∑s∈S p1szsh = ∑s∈S qszsh ≤ 0. This shows
that BR

h ⊆ BAD
h .
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Proof.

ii) Choose µs = qs
p1s

for all s ∈ S , and write the Radner budget set as

BR
h =

{
(xs1h, ...,xsRh) ∈ RLR

+ : ∃(zs1h, ...,zsRh) ∈ RR s.t.

∑
s∈S

qszsh ≤ 0and µsps (xsh−ωsh)≤ p1szsh, ∀s ∈ S

}
But then one can mimic the proof of i) and write the budget set in
the Arrow-Debreu form. QED
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Assets pay money or real goods conditional on states.

Let us assume that asset payments are in good 1.

There are two dates t = 0 and t = 1.

Let there be S states like in 19.E in MWG.

Asset is characterised by a return vector r = (r1, ...rS) ∈ RS .

rs is what the asset pays in state s.
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Options constitute an important class of assets.

Underlying an option is another asset; assume its return vector
is given by r ∈ RS .

A call option is characterised by a strike price c .

A unit of an option gives the holder a right to buy a unit of the
underlying asset at price c after the uncertainty has resolved.

The return vector of the asset is
r(c) = (max {0, r1− c} ,max {0, r2− c} , ...,max {0, rS − c}).
At state s an option holder exercises his/her right if rs − c > 0.
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Assume that there is a given set of assets called asset
structure tradable at t = 0.

Assume there are K assets.

The price of assets at t = 0 is given by q = (q1, ...,qK ) ∈ RK .

The trades are denoted by z = (z1, ...,zK ) ∈ RK , and called a
portfolio.
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De�nition

Asset prices q = (q1, ...,qK ) ∈ RK and spot prices
ps = (p1s , ...,pLs) ∈ RL for all s, and for all consumers i a portfolio
z∗i = (z∗

1i , ...,z
∗
Ki ) ∈ RK , and consumption plan

x∗i = (x∗
1i , ...,x

∗
Si ) ∈ RLS is a Radner-equilibrium if z∗i and x∗i solve

maxz∗i ∈RK x∗i ∈RLSUi (x1i , ...,xSi )

s.t.∑
k

qkzk ≤ 0

psxsi ≤ psωsi +∑
k

p1szki rsk∀s

∑
i

z∗ki ≤ 0

∑
i

x∗si ≤∑
i

ωsi∀s,k
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Note that p1s = 1 is a possible normalisation; this is done in
the sequel.

Things are clearer in matrix-notation and we de�ne the S×K
return matrix

R =

r11 . . . . r1K
. . .
. . .
. . .
rS1 . . . . rSK

where row s keeps track of returns of di�erent assets in state
s, and column k keeps track of asset k 's returns in di�erent
states.
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Now the budget constraint becomes

Bi (p,q,R) =

x ∈ RLS
+ : zi ∈ RK ,qzi ≤ 0 and

p1 (x1i −ω1i )
.
.
.

pS (xSi −ωSi )

≤ Rzi
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Theorem

Assume that 0 6= rk ≥ 0 for all k .Then for every vector of asset

prices q ∈ RK in a Radner-equilibrium can be found multipliers

µ = (µ1, ...,µS)≥ 0 such that qk = ∑s µsrsk , or q
T = µR .

Proof.

Asset price vector q ∈ RK is arbitrage free if there is no portfolio
z = (z1, ...,zK ) such that qz ≤ 0, 0 6= Rz ≥ 0. It is straightforward
that in equilibrium q must be arbitrage free. We �rst show that if
q ∈ RK is arbitrage free then there exists a vector of multipliers
µ = (µ1, ...,µS)≥ 0 such that qT = µR . It is clear that qk > 0 for
all k . We can also assume that each row of R has strictly positive
elements.
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Proof.

Consider the set

V =
{
v ∈ RS : v = Rz ,z ∈ RK and qz = 0

}
Since q is arbitrage free V ∩RS

+ \{0}= /0. Both are convex and
there exists a separating hyperplane; there exists
µ ′ = (µ ′

1
, ...,µ ′S)≥ 0 such that µ ′v ≤ 0 for v ∈ V and µ ′w ≥ 0 for

w ∈ RS
+. Since −v ∈ V whenever v ∈ V it must be the case that

µ ′v = 0 for all v ∈ V .
We claim that qT is proportional to µ ′R ∈ RK . First
0 6= µ ′R ≥ 0T . If the claim does not hold there exists z̄ ∈ RK such
that qz̄ = 0 and µ ′Rz̄ > 0. But if v = Rz̄ then v ∈ V and µ ′v 6= 0
which is a contradiction. Consequently, qT = αµ ′R for some
α > 0; let µ = αµ ′.
As equilibrium asset prices must be arbitrage free the result
follows
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De�nition

Asset structure with S×K return matrix is complete if rank R = S .

With complete asset structure transfer of wealth over all states
is possible.

If S = 4 and a primary asset has returns r = (4,3,2,1) we can
have a complete asset structure with options r(3.5), r(2.5)
and r(1.5).

Theorem

If the asset structure is complete the equilibrium is Pareto-e�cient.
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With assets the important thing is the range of the return
matrix

range R =
{
v ∈ RS : v = Rz , z ∈ RK

}
It tells the possible wealth vectors that are achievable with a
given asset structure.

Theorem

Let there be two assets structures with return matrices R and R ′. If
range R = range R ′ then the consumption plans x∗in Radner

equilibria corresponding to R and R ′ are equal.
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Exercise 19.E .4.Suppose that r3 = α1r1 + α2r2. Show that in
equilibrium q3 = α1q1 + α2q2. Assume �rst that q3 > α1q1 + α2q2.
Then portfolio z = (α1q3,α2q3,−α1q1−α2q2) must return zero or
qz = 0. Now

∑k p1srskzk = p1s (rs1α1q3 + rs2α2q3− rs3 (α1q1 + α2q2)) =
p1srs3 (q3− (α1q1 + α2q2)) for each s. Since 0 6= r3 ≥ 0 we have

∑k p1srskzk ≥ 0 for each s and at least one strict inequality.
Consumers can always increase their wealth, and utility, by adding z
to their portfolio. But this cannot happen in equilibrium. If
q3 < α1q1 + α2q2 then we can show analogously that consumers
can always pro�tably subtract z from their portfolio. Thus, it must
be the case that q3 = α1q1 + α2q2.
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