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We study a simple exchange economy that can be depicted in
an Edgeworth-Bowley box.

There are two goods two agents A and B with endowments
ωA = (ωA1,ωA2) and ωB = (ωB1,ωB2).

An allocation x = (xA,xB) is feasible if xA+ xB = ωA+ωB .

Contract curve is the set of all Pareto optimal allocations.

The core is the set of Pareto optimal allocations that are
individually rational.
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Assume that there are more than 2 agents, say, N agents.

We say that an allocation x = (x1,x2, ...,xN) is blocked by
coalition S ⊆ N if there is another allocation y such that
yi � xi for all i ∈ S with at least one strict preference and

∑i∈S yi = ∑i∈S ωi .

The core is the set of feasible allocations that are not blocked.

Assume that in the economy there are two agents identical to
A and two agents identical to B .
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It is clear that if allocation x is in the core agents A1 and A2
cannot get di�erent bundles that are equally good if their
preferences are strictly convex.

More interesting is that they have to get exactly the same
bundles.

Assume that they get di�erent bundles and that A1 gets a
strictly worse bundle than A2.

Assume that B1 does not get a strictly better bundle than B2.

Let us study coalition {A1,B1}.
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The average of B1's bundle and B2's bundle is certainly at
least as good as B1's bundle
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1

2
xB2 �B xB1

The average of A1's bundle and A2's bundle is strictly better
than A1's bundle
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2
(xB1+ xB2+ xA1+ xA2) =

1

2
(2ωB +2ωA) = ωB +ωA is feasible to the coalition.
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In a two-agent economy the worst core allocation from A1's
point of view is h = (hA,hB) where hA is on the same
indi�erence curve as his/her endowment.

In the four-agent economy it is not possible that A-type agents
get hA in the core.

Assume to the contrary.

Consider coalition {A1,A2,B1}.

In the Edgeworth-Bowley box draw a line that connects h and
ω = (ωA,ωB).

Any allocation on the line is preferred to ωA by A-types.

Consider k = 1

2
h+ 1

2
ω .
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Consider allocation that gives kA to A1 and A2 and hB to B1.

Clearly A-types fare strictly better than at h and B1 does
equally well.

The resources the coalition uses are given by

2kA+hB = 2

(
1

2
hA+

1

2
ωA

)
+hB = hA+ωA+hB

This is feasible since h = (hA,hB) is in the core of the
two-agent economy and consequently

hA+hB = ωA+ωB

It is clear that allocations 'close' to h do not belong to the
core of the four-agent economy.
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Any line from ω to an e�cient allocation that is not the
Walrasian equilibrium allocation f must cut either type of
agent's indi�erence curve that passes through f .

If f is to the south-west from the equilibrium allocation it cuts
type-A agent's indi�erence curve so that it is above it close to
f .

So there is a point close to f preferred to f by type-A agents.

Denote it by kA = 1

nωA+
n−1
n fA for some n.
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A coalition where there are n type-A agents and n−1 type-B
agents improves upon f .

This happens by giving kA to the A-type agents and fB to
B-type agents.

The resources used are

nkA+(n−1)fB = ωA+(n−1)fA+(n−1)fB

= ωA+(n−1)(fA+ fB)

= ωA+(n−1)(ωA+ωB)

This means that f is not in the core.
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Example

Figuring out the core.
Let there be two consumers A and B .
The relevant data are: ωA = (2,3), ωB = (4,5), uA(x ,y) = x2y and
uB(x ,y) = xey .
To determine the core in the Edgeworth-Bowley box notice �rst
that when A consumes x and y , B consumes 6−x and 8−y .
The slope of A's indi�erence curve is given by −uy

ux
=− x

2y .

The slope of B 's indi�erence curve is given by −uy
ux

= x−6.
Condition − x

2y = x−6 which is equivalent to y =− x
2x−12 gives the

contract curve.
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Consumer A can guarantee utility 12.
Bundle (x ,y) on the contract curve gives the same utility if
x2

(
− x

2x−12
)
= 12 or x ≈ 3,76906.

Consumer B can guarantee utility 4e5.
Bundle (6−x ,8−y) on the contract curve gives the same utility if
x ≈ 4,72641.
Consequently the core is given by f : [3,76906,4,72641] 7−→ R,
f (x) =− x

2x−12 .
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The reasoning before the example hints that when the
economy grows the core might go towards the Walrasian
equilibrium allocation.

The following example shows that something more is needed.
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In the economy there are two consumers and two goods.
Each consumer has preferences u(x ,y) = (x+1)(y +1).
Endowments are given by ω1 = (3,0) and ω2 = (0,3).
Consider an increasing sequence of economies En such that in the
nth economy there is one consumer of type 1 with endowment
ω1n = (3n,0) and n consumers of type 2 ω2n = (0,3).
The Walrasian equilibrium allocation in the nth economy is given
by x1n =

(
3n
2
, 3n
2

)
and x2n =

(
3

2
, 3
2

)
.

But the core consists of allocations that give consumers of type 1
allocation (nα,nα) and consumer of type 2 (3−α,3α) where
2

3
≤ α ≤ 2.
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Let us see how this comes about by showing that f1 = (2n,2n) for
the consumer of type 1 and f2 = (1,1) for consumers of type 2 is in
the core for all n.
Suppose this is not the case.
Then there exists a coalition S that can improve upon it, and
consumer 1 has to belong to it.
Denote the improving allocation by wa, a ∈ S .
Note that if there were prices and they were p = (1,1) then the
allocation would maximise the consumers' utility in the sets

{z : pz ≤ p (2n,2n)}

{z : pz ≤ p (1,1)}
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Now the following have to hold simultaneously

wa �a fa

∑
a∈S

wa = ∑
a∈S

ωa

p ∑
a∈S

wa > p ∑
a∈S

fa
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Let there be k+1 consumers in S which means that

p ∑
a∈S

fa = 2k+4n ≥ p ∑
a∈S

ωa = 3k+3n

But then
p ∑
a∈S

wa > p ∑
a∈S

ωa

which is a contradiction.
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