The core Lecture 7

November 15, 2015

The core

æ

 We study a simple exchange economy that can be depicted in an Edgeworth-Bowley box.

• There are two goods two agents A and B with endowments $\omega_A = (\omega_{A1}, \omega_{A2})$ and $\omega_B = (\omega_{B1}, \omega_{B2})$.

• An allocation $x = (x_A, x_B)$ is feasible if $x_A + x_B = \omega_A + \omega_B$.

• Contract curve is the set of all Pareto optimal allocations.

 The core is the set of Pareto optimal allocations that are individually rational.

• Assume that there are more than 2 agents, say, N agents.

• We say that an allocation $x = (x_1, x_2, ..., x_N)$ is blocked by coalition $S \subseteq N$ if there is another allocation y such that $y_i \succeq x_i$ for all $i \in S$ with at least one strict preference and $\sum_{i \in S} y_i = \sum_{i \in S} \omega_i$.

• The core is the set of feasible allocations that are not blocked.

Assume that in the economy there are two agents identical to
A and two agents identical to B.

• It is clear that if allocation x is in the core agents A1 and A2 cannot get different bundles that are equally good if their preferences are strictly convex.

• More interesting is that they have to get exactly the same bundles.

• Assume that they get different bundles and that A1 gets a strictly worse bundle than A2.

• Assume that B1 does not get a strictly better bundle than B2.

Let us study coalition {A1, B1}.

• The average of *B*1's bundle and *B*2's bundle is certainly at least as good as *B*1's bundle

$$\frac{1}{2}x_{B1} + \frac{1}{2}x_{B2} \succeq_B x_{B1}$$

• The average of A1's bundle and A2's bundle is strictly better than A1's bundle

$$\frac{1}{2}x_{A1} + \frac{1}{2}x_{A2} \succ_A x_{A1}$$

• But
$$\frac{1}{2}x_{B1} + \frac{1}{2}x_{B2} + \frac{1}{2}x_{A1} + \frac{1}{2}x_{A2} = \frac{1}{2}(x_{B1} + x_{B2} + x_{A1} + x_{A2}) = \frac{1}{2}(2\omega_B + 2\omega_A) = \omega_B + \omega_A$$
 is feasible to the coalition.

- In a two-agent economy the worst core allocation from A1's point of view is $h = (h_A, h_B)$ where h_A is on the same indifference curve as his/her endowment.
- In the four-agent economy it is not possible that A-type agents get h_A in the core.
- Assume to the contrary.
- Consider coalition {A1, A2, B1}.
- In the Edgeworth-Bowley box draw a line that connects h and $\omega = (\omega_A, \omega_B)$.
- Any allocation on the line is preferred to ω_A by A-types.

• Consider
$$k = \frac{1}{2}h + \frac{1}{2}\omega$$
.

- Consider allocation that gives k_A to A1 and A2 and h_B to B1.
- Clearly A-types fare strictly better than at h and B1 does equally well.
- The resources the coalition uses are given by

$$2k_A + h_B = 2\left(\frac{1}{2}h_A + \frac{1}{2}\omega_A\right) + h_B = h_A + \omega_A + h_B$$

• This is feasible since $h = (h_A, h_B)$ is in the core of the two-agent economy and consequently

$$h_A + h_B = \omega_A + \omega_B$$

 It is clear that allocations 'close' to h do not belong to the core of the four-agent economy.

• Any line from ω to an efficient allocation that is not the Walrasian equilibrium allocation f must cut either type of agent's indifference curve that passes through f.

• If f is to the south-west from the equilibrium allocation it cuts type-A agent's indifference curve so that it is above it close to f.

• So there is a point close to f preferred to f by type-A agents.

• Denote it by
$$k_A = \frac{1}{n}\omega_A + \frac{n-1}{n}f_A$$
 for some $n \to \infty$ and $n \to \infty$

- A coalition where there are n type-A agents and n-1 type-B agents improves upon f.
- This happens by giving k_A to the A-type agents and f_B to B-type agents.
- The resources used are

$$nk_A + (n-1)f_B = \omega_A + (n-1)f_A + (n-1)f_B$$

$$= \omega_A + (n-1)(f_A + f_B)$$

$$= \omega_A + (n-1)(\omega_A + \omega_B)$$

• This means that f is not in the core. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Figuring out the core.

Let there be two consumers A and B. The relevant data are: $\omega_A = (2,3)$, $\omega_B = (4,5)$, $u_A(x,y) = x^2 y$ and $u_B(x,y) = xe^y$.

To determine the core in the Edgeworth-Bowley box notice first that when A consumes x and y, B consumes 6-x and 8-y. The slope of A's indifference curve is given by $-\frac{u_y}{u_x} = -\frac{x}{2y}$. The slope of B's indifference curve is given by $-\frac{u_y}{u_x} = x - 6$. Condition $-\frac{x}{2y} = x - 6$ which is equivalent to $y = -\frac{x}{2x-12}$ gives the contract curve.

Consumer A can guarantee utility 12.

Bundle (x, y) on the contract curve gives the same utility if $x^2\left(-\frac{x}{2x-12}\right) = 12$ or $x \approx 3,76906$.

Consumer *B* can guarantee utility $4e^5$.

Bundle (6-x, 8-y) on the contract curve gives the same utility if $x \approx 4,72641$.

Consequently the core is given by $f: [3,76906,4,72641] \mapsto \mathbb{R}$, $f(x) = -\frac{x}{2x-12}$.

• The reasoning before the example hints that when the economy grows the core might go towards the Walrasian equilibrium allocation.

• The following example shows that something more is needed a same

In the economy there are two consumers and two goods. Each consumer has preferences u(x, y) = (x+1)(y+1). Endowments are given by $\omega_1 = (3,0)$ and $\omega_2 = (0,3)$. Consider an increasing sequence of economies \mathcal{E}_n such that in the *n*th economy there is one consumer of type 1 with endowment $\omega_{1n} = (3n,0)$ and n consumers of type 2 $\omega_{2n} = (0,3)$. The Walrasian equilibrium allocation in the *n*th economy is given by $x_{1n} = \left(\frac{3n}{2}, \frac{3n}{2}\right)$ and $x_{2n} = \left(\frac{3}{2}, \frac{3}{2}\right)$. But the core consists of allocations that give consumers of type 1 allocation $(n\alpha, n\alpha)$ and consumer of type 2 $(3 - \alpha, 3\alpha)$ where $\frac{2}{2} \leq \alpha \leq 2$.

Let us see how this comes about by showing that $f_1 = (2n, 2n)$ for the consumer of type 1 and $f_2 = (1, 1)$ for consumers of type 2 is in the core for all n.

Suppose this is not the case.

Then there exists a coalition S that can improve upon it, and consumer 1 has to belong to it.

Denote the improving allocation by w_a , $a \in S$.

Note that if there were prices and they were p = (1, 1) then the allocation would maximise the consumers' utility in the sets

 $\{z: pz \le p(2n, 2n)\}$ $\{z: pz \le p(1, 1)\}$

Now the following have to hold simultaneously

$$w_a \succ_a f_a$$
$$\sum_{a \in S} w_a = \sum_{a \in S} \omega_a$$

$$p\sum_{a\in S}w_a>p\sum_{a\in S}f_a$$

æ

Let there be k+1 consumers in S which means that

$$p\sum_{a\in S} f_a = 2k + 4n \ge p\sum_{a\in S} \omega_a = 3k + 3n$$

But then

$$p\sum_{a\in S}w_a>p\sum_{a\in S}\omega_a$$

which is a contradiction.

æ