General equilibrium theory Lecture 5

November 8, 2015

General equilibrium theory

- The subject has a long history starting perhaps from Leon Walras. For a concise history I suggest that you have a look at section 1.3 here http://www.econ.ucsd.edu/~rstarr/113Winter2012/2010Chap1.pdf
- The aim of GET is to determine the conditions under which there exists an economywide equilibrium; all markets clear simultaneously.
- One is also interested in the properties of the equilibrium.
- The equilibrium concept is called competitive equilibrium or Walras-equilibrium.
- The presentation of the basic results draws heavily on Maskin and Roberts (2008, Economic Theory).

- There is a set of consumers $\mathscr{H} = \{1, ..., H\}$ with preferences \succeq_h or $u_h : \mathbb{R}^L_+ \to \mathbb{R}$.
- Each consumer has an endowment $\omega_h \in X_h$ where $X_h \subseteq \mathbb{R}_+^L$ is the consumption set.
- The set of commodities is given by $\mathscr{L} = \{1, ..., L\}$.
- This describes a pure exchange economy $\mathscr{E} = ((u_h, \omega_h)_{h \in \mathscr{H}}).$
- If we further postulate a set of firms $\mathscr{F} = \{1, ..., F\}$ with production sets $Y_f \subseteq \mathbb{R}^L$ we have an economy with production.

- A generalised competitive mechanism associates with each price vector p ∈ △^{L-1} and each production plan y_f ∈ Y_f income I_h(p, {y_f}) to each consumer h ∈ ℋ.
- In a Walrasian economy $I_h(p, \{y_f\}) = p\omega_h + \sum_{f \in \mathscr{F}} \theta_{fh} py_f$ where θ_{fh} is the ownership share of consumer h of firm f.

General equilibrium theory

・ロト ・聞 ト ・ ヨト ・ ヨトー

Definition

A Walras-equilibrium is a price $p \in \mathbb{R}^L_+$ such that

$$x_h(p) = argmax_w \left\{ u_h(w) \, s.t. \, pw \leq p\omega_h + \sum_{f \in \mathscr{F}} heta_{fh} py_f
ight\}$$

and

$$y_f(p) = argmax_v \{ pv \, s.t. \, v \in Y_f \}$$

and

$$\sum_{h\in\mathscr{H}}x_h(p)=\sum_{f\in\mathscr{F}}y_f(p)+\sum_{h\in\mathscr{H}}\omega_h$$

< 一型

- ₹ 🖬 🕨

- A central question is the existence of Walras-equilibrium.
- This depends on the parameters of the problem.
- We assume that the preferences \succeq_h can be represented by a utility function u_h that satisfies A1-A3 below.
- We also require that the endowment vectors are strictly positive.

- A1 u_h is continuous, $h \in \mathscr{H}$.
- ② A2 u_h is strictly increasing or u_h(x) > u_h(y) whenever x > y, h ∈ ℋ.
- **3** A3 u_h is concave, $h \in \mathcal{H}$.
- A4 $\omega_h \gg 0$, $h \in \mathscr{H}$.
- **③** A5 Y_f is closed and convex, and $0 \in Y_f$, $f \in \mathscr{F}$.

- A2 guarantees that $px_h = l_h$ even if p is not an equilibrium price.
- Summing over all consumers one comes up with the Walras's law

$$p\left(\sum_{h\in\mathscr{H}}(x_h-\omega_h)-\sum_{f\in\mathscr{F}}y_f\right)=0$$

- A3 means that generally the excess demand is a correspondence.
- Let us denote it by $Z(p) = \{ z | z = \sum_{h \in \mathscr{H}} (x_h - \omega_h) - \sum_{f \in \mathscr{F}} y_f \} \text{ where } x_h$ maximises u_h subject to the budget constraint $h \in \mathscr{H}$, and y_f maximises profit subject to the technology and prices $f \in \mathscr{F}$.

Lemma. Z is well-defined, upper hemi-continuous, convex-valued, compact-valued and satisfies the Walras's law.

Proof.

This is somewhat complicated (see Debreu 1959).

Lemma. If $p_l = 0$, then for all $z \in Z(p)$ it is the case that $z_l > 0$.

Proof.

Follows from the strict monotonicity of preferences.

・ 同 ト ・ 三 ト ・

• The proof of existence requires a fixed point theorem.

Theorem

Kakutani's fixed point theorem. Let $X \subseteq \mathbb{R}^k$ be a convex and compact set. Let $f : X \longrightarrow X$ be a correspondence which is non-empty, convex-valued and upper hemi-continuous for all $x \in X$. There exists an $x \in X$ such that $x \in f(x)$.

Theorem

Walras-equilibrium exists when A1-A5 are satisfied.

General equilibrium theory

イロン イロン イヨン イヨン

General equilibrium theory

・ロト ・聞 ト ・ ヨト ・ ヨトー

Consider p such that $p_l = 0$. Now $z_l > 0$ whenever $z \in Z(p)$. Upper hemi-continuity of Z means that there exists $\delta > 0$ such that for all p, for all $l \in \mathscr{L}$, it is the case that $z_l > 0$ whenever $p_l < \delta$ and $z \in Z(p)$. This further implies that there exists K > 0 such that for all p, for all $z \in Z(p)$, and all $l \in \mathscr{L}$, it is the case that $z_l + Kp_l > 0$. This is because the excess demand is bounded from below. Let us define

$$H(p) = \left\{ w \middle| w = \frac{z + Kp}{\sum_{l} (z_{l} + Kp_{l})} z \in Z(p) \right\}$$

which is a correspondence from \triangle^{L-1} to itself. Clearly H satisfies the requirements of the Kakutani fixed point theorem because Z satisfies them, and there exists \bar{p} such that $\bar{p} \in H(\bar{p})$.

Consider excess demand that corresponds to the fixed point, $ar{z}\in Z\left(ar{p}
ight)$ or

$$\bar{p} = \frac{\bar{z} + K\bar{p}}{\sum_{l} (\bar{z}_{l} + K\bar{p}_{l})} \tag{1}$$

Now, if $\bar{p_k} = 0$ then $\bar{z_k} > 0$, and this is a contradiction with (1), and consequently $\bar{p_l} > 0$ for all $l \in \mathscr{L}$. If $\sum_{k \in \mathscr{L}} \bar{z_k} > 0$ then $\bar{z_l} > 0$ for all $l \in \mathscr{L}$; otherwise $K\bar{p_l}$ would be divided by something greater than K in (1) and the fixed point property would not hold (note that $\sum_l \bar{p_l} = 1$). But in this case the Walras's law does not hold. Analogously, we can discard the possibility that $\sum_{k \in \mathscr{L}} \bar{z_k} < 0$. But this means that $\sum_{k \in \mathscr{L}} \bar{z_k} = 0$ and $\bar{z_l} = 0$ for all $l \in \mathscr{L}$ at price \bar{p} . QED

Definition

A feasible allocation $(\{x_h\}_{h\in\mathscr{H}}, \{y_f\}_{f\in\mathscr{F}})$ is Pareto-efficient if for some feasible allocation $(\{\widetilde{x}_h\}_{h\in\mathscr{H}}, \{\widetilde{y}_f\}_{f\in\mathscr{F}})$ there exists $i\in\mathscr{H}$ such that $\widetilde{x}_i \succ x_i$ then there exists $j\in\mathscr{H}$ such that $\widetilde{x}_j \prec x_j$.

Theorem

First welfare theorem. If preferences are strictly monotone then Walras-equilibrium is Pareto-efficient.

General equilibrium theory

・ロト ・聞 ト ・ ヨト ・ ヨトー

Assume that *p* is a Walras-equilibrium and $({x_h}_{h\in\mathscr{H}}, {y_f}_{f\in\mathscr{F}})$ a corresponding allocation. Contrary to the claim assume that there exists a feasible allocation $({\widetilde{x}_h}_{h\in\mathscr{H}}, {\widetilde{y}_f}_{f\in\mathscr{F}})$ that Pareto dominates $({x_h}_{h\in\mathscr{H}}, {y_f}_{f\in\mathscr{F}})$. We must have $\sum_{h\in\mathscr{H}} x_h(p) = \sum_{f\in\mathscr{F}} y_f(p) + \sum_{h\in\mathscr{H}} \omega_h$ and $\sum_{h\in\mathscr{H}} \widetilde{x}_h(p) = \sum_{f\in\mathscr{F}} \widetilde{y}_f(p) + \sum_{h\in\mathscr{H}} \omega_h$ and $p\widetilde{x}_h \ge px_h$ for all $h\in\mathscr{H}$ with at least one strict inequality; note that in the second relation we can assume equality because of strict monotonicity of preferences.

Proof.

Sum over all consumers to get

$$\sum_{h\in\mathscr{H}}p\widetilde{x}_h(p)>\sum_{h\in\mathscr{H}}px_h(p)$$

Profit maximisation implies that $p\widetilde{y}_f(p) \leq py_f(p)$ for all $f \in \mathscr{F}$, and summing over all firms yields $\sum_{f \in \mathscr{F}} p\widetilde{y}_f(p) \leq \sum_{f \in \mathscr{F}} py_f(p)$. Combining in an evident way

$$p\left(\sum_{h\in\mathscr{H}}x_h(p)-\sum_{f\in\mathscr{F}}y_f(p)-\sum_{h\in\mathscr{H}}\omega_h\right) < p\left(\sum_{h\in\mathscr{H}}\widetilde{x}_h(p)-\sum_{f\in\mathscr{F}}\widetilde{y}_f(p)-\sum_{h\in\mathscr{H}}\omega_h\right)$$

But this is a contradiction. QED

- Usually in the proof of the second welfare theorem also the existence of equilibrium is shown; typically using the separating hyperplane theorem.
- However, if the existence of equilibrium is assumed the proof is as simple as that of the first welfare theorem.

Theorem

Second welfare theorem. Assume that preferences are strictly monotone. Let $(\{x_h\}_{h\in\mathscr{H}}, \{y_f\}_{f\in\mathscr{F}})$ be Pareto efficient. Assume that consumer h gets income $I_h = px_h$. If an equilibrium exists, then $(\{x_h\}_{h\in\mathscr{H}}, \{y_f\}_{f\in\mathscr{F}})$ is an equilibrium allocation.

General equilibrium theory

・ロト ・聞 ト ・ ヨト ・ ヨトー

Assume that \widetilde{p} is a Walras-equilibrium and $(\{\widetilde{x}_h\}_{h\in\mathscr{H}}, \{\widetilde{y}_f\}_{f\in\mathscr{F}})$ the corresponding equilibrium allocation which is known to be Pareto efficient. As the income of any consumer h allows him/her to afford both \widetilde{x}_h and x_h s/he must be indifferent between them, and since preferences are strictly monotone $px_h = p\widetilde{x}_h$. Profit maximisation implies that $\widetilde{p}y_f \leq \widetilde{p}\widetilde{y}_f$ for all $f \in \mathscr{F}$, and if for some firm the inequality is strict summing we get

$$\widetilde{p}\left(\sum_{h\in\mathscr{H}}\widetilde{x}_h-\sum_{f\in\mathscr{F}}\widetilde{y}_f\right)<\widetilde{p}\left(\sum_{h\in\mathscr{H}}x_h-\sum_{f\in\mathscr{F}}y_f\right)$$

General equilibrium theory

・ロト ・聞 ト ・ ヨト ・ ヨトー

But Pareto efficiency of the allocations and strict monotonicity of preferences means that

$$\sum_{h \in \mathscr{H}} x_h - \sum_{f \in \mathscr{F}} y_f = \sum_{h \in \mathscr{H}} \widetilde{x}_h - \sum_{f \in \mathscr{F}} \widetilde{y}_f = \sum_{h \in \mathscr{H}} \omega_h$$

and consequently all firms make the same profit as at allocation $({x_h}_{h\in\mathscr{H}}, {y_f}_{f\in\mathscr{F}})$; this must be an equilibrium allocation at prices $\widetilde{\rho}$. QED