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Example

Insurance

DM has wealth w and faces loss L with probability p.

DM can buy insurance that costs r per unit; a unit pays out unity
in case of loss.

DM'’s problem is

maxypu(w — L—rx+x)+ (1 —p)u(w —rx) (1)

The first order condition is given by

pu(w—L—rx+x)(1—r)—(1—p)/(w—rx)r=0  (2)
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For a risk averse DM this is a necessary and sufficient condition for
the optimal solution x*(p, L, r).

One immediately sees that for an actuarially fair insurance, or

r = p, the solution is given by x* = L.

For some other price there is over or under insurance.
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From 2 one finds by total differentiation

dx

==
pu"(w—L+(1—=r)x)x(L—r)+pus(w—L+(L—x)r)—(1—p)u" (w—r
i (o= L+ (=0 (= P+ = )

Thus, if the insurer is a monopoly its maximisation problem is

max,rx — px
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The first order condition is

dx
—p)— =0 4
x+(r=p) (4)
This gives some indication why usually the actuarially fair price is
assumed.
The LHS of 4 evaluated at r = p is given by x > 0.
Thus, the monopoly would like to raise the price.
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Let us return to the assumption of a fixed price, and see how DM’s
wealth affects things.
Differentiating (2) with respect to wealth one gets expression

pu' (w—L+1—=r)x)(L=r)= (1 —=p)" (w—rx)r

Evaluate this at x* dividing the first term by
pu (w—L—rx+x)(1—r) and the second term by
(1—p)u/ (w—rx)r to get an expression of the same sign

u'(w—L+(1-r)x) u"(w—rx)
u(w—L+(1-r)x) o (w—rx)

The sign is the difference between Arrow-Pratt measure of risk
aversion at wealth levels w —rx and w — L+ (1 —r)x.
If the DM has decreasing absolute risk aversion the amount of
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@ Risk aversion is a local measure but people tend to use it like a
global one.

@ Assuming that a person is risk averse everywhere leads so
some weird consequences.

Assume that a DM rejects an even gamble to win 11 and to lose 10.
The s/he should reject any even gamble to win X and to lose 1000
for any X.
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To see the logic assume that initial wealth is w.
Rejecting the gamble is equivalent to

u(w+11) —u(w) < u(w) — u(w —10)

or the worth of the eleventh unit is at most 10/11 of the worth of
the tenth unit lost.

Or U/(W—i—ll) < U(W+1]:-|.]?*U(W) < %u(w)filt()wflo) < %ul(w—lo).
Changes in the wealth in interval [—10,11] are associated with a
loss of about 10% in marginal utility.

If a DM rejects the above gamble at all wealth levels then going up
in 21 unit steps marginal utility keeps decreasing by more than
10/11.

As the marginal utility diminishes faster than a geometric series this
implies that there is not finite amount X that the DM would accept
in an even gamble with a loss of 1000.
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This as a critique of expected utility theory has a couple of weak
points.

The first is evident, namely that the result relies on rejecting a
certain gamble at all wealth levels; this might not be observable in
practice.

The second is the idea that the DM’s preferences are over final
wealth levels.

von Neumann-Morgenstern axiomatisation, however, is silent about
the outcomes of the gambles; they might as well be changes in
relative wealth.

Rabin’s absurd results are easily avoided by allowing more flexible
utility functions.
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Perhaps more interesting is the Ellsberg paradox.

There are two urns with red and blue balls.

In urn-1 there 50 red balls and 50 blue balls.

In urn-2 there are altogether 100 red and/or blue balls but nothing
more is know about their numbers.

Gamble g! gives 50 if a random draw from urn-1 is a red ball and
zero otherwise.

Gamble g} gives 50 if a random draw from urn-1 is a blue ball and
zero otherwise.

Gamble g? gives 50 if a random draw from urn-2 is a red ball and
zero otherwise.

Gamble gg gives 50 if a random draw from urn-2 is a blue ball and
zero otherwise.

Decision making under uncertainty



Decision making under uncertainty



Example

In hypothetical situations as well as in experiments people are
indifferent between g} and g}, as well as g2 and g7.

But they prefer g} to g2, as well as g} to g2.

This seems to lead to the conclusion that in gamble g2 the

proportion of red balls is less than % and the proportion of blue

balls is less than %
The DM'’s attitude towards gambles is known as ambiguity

averseness.
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Kreps 6.8. Assume that consumer’s wealth is y, there are two
goods, and von Neumann-Morgenstern preferences are given by
u(x,y) = f(x+y) where f is an increasing.

Consider two prices p = (1,3) and p’ = (3,1).

We show that the consumer prefers risky situation where the prices
p and p’ with equal probabilities to price %p—i—%p’ =(2,2).

When each good costs 2 the consumer does not care which one to
buy and gets utility f ().

When prices are either p or p’ consumer buys the cheaper good and
gets utility f(y).
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Assume next that the preferences are given by f (min{x,y}) where
f is concave and strictly increasing, f(0) finite.

The possible prices can be p = (y,7) or p' = (%,%) where y > 1.
We show that for fixed y one can find function f such that
consumer prefers prices 2p+ p’ to the risky situation.

Also for a fixed f one can find ¥ large enough such that the
consumer prefers prices %p—i— %p’ to the risky situation.

As prices are equal consumer spends half his/her income on each

good and gets utility 1f< )+ f(yy) in the risky situation and

f | ——Y—= | in the non-risky situation.
(wm)

Let y grow without bound; In the latter expression argument goes
to zero in the former this happens only to the first term.
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Fix 7 and notice that %, < er’—% <.

.

Consider a piecewise linear function f(x) = x for x

1 T-
Yt vty

f(X):#—;—l—S(X—L) for x > Y+
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