FDPE Microeconomics 1: Decision theory Fall 2015 Hannu Vartiainen

Problem Set 1

- 1. Prove the propositions stated in the lecture notes:
 - Let the choice structure \mathcal{A} include all two or three element subsets of X. If $c(\cdot)$ satisfies WARP on \mathcal{A} , then the induced revealed preference relation \succeq^* is rational.
 - If \succeq is a rational preference relation, then the choice function $c^*(\cdot, \succeq)$ induced by \succeq satisfies WARP
- 2. Show that if c is singly valued, then WARP=IIA. Further, show that the resulting revealed preference relation \succeq^* is *strict*.
- 3. Amartya Sen's two conditions on a non-empty choice rule c:
 - Condition α : if $x \in c(A)$ and $x \in B \subseteq A$, then $x \in c(B)$.
 - Condition β : if $x, y \in c(B)$ and $B \subseteq A, y \in c(A)$, then $x \in c(A)$.

Interpret the conditions. Show that α and β together are equivalent with WARP.

- 4. Show that the definition of continuous preferences given in the class is equivalent with the following: Preferences \succeq on X are continuous if whenever $x \succ y$, there are open neighborhoods B_x and B_y around x and y respectively such that for any $x' \in B_x$ and $y' \in B_y$ also $x' \succ y'$.
- 5. Show that if preferences \succeq are represented by a continuous utility function u, then \succeq is continuous (hint: employ the definition of continuity stated in the previous problem).
- 6. Show that if preferences \succeq on \mathbb{R}^L_+ satisfy continuity, and $x \succeq z \succeq y$, then there is a $w \in \mathbb{R}^L_+$ in the line segment connecting x and y such that $w \sim z$.
- 7. Show that the preferences \succeq on $X = \mathbb{R}^L_+$ are convex if and only if a utility function u representing them is quasi-concave.
- 8. Let continuous preferences on \mathbb{R}^2_+ be represented by a utility function of the form $u(x_1, x_2) = a_1 x_1 + a_2 x_2$, for some $a_1, a_2 > 0$. Show that then \succeq satisfy the following conditions:

- Additivity: $(x_1, x_2) \succeq (y_1, y_2)$ implies $(x_1 + d_1, x_2 + d_2) \succeq (y_1 + d_1, y_2 + d_2)$, for any numbers d_1, d_2
- Monotonicity: If $x_1 \ge y_1$ and $x_2 \ge y_2$, then $(x_1, x_2) \succeq (y_1, y_2)$.
- Continuity
- 9. The government finances public expenditure of magnitude g by collecting taxes. In this question, you are invited to think about the optimal ways of collecting taxes. Suppose that there are goods x and y. The government can finance g by choosing either a tax on income t_w or by taxing consumption of good x by rate t_x . The government budget constraint for the two cases reads: $t_w w = g$ and $t_x x (p_x, p_y, t_x) = g$. Show that the consumer prefers an income tax in this case.
- 10. Let u and v both be representation of preferences \succeq on X. Show that a function $g : \mathbb{R} \to \mathbb{R}$ such that v(x) = g(u(x)) for all $x \in X$ must be *strictly* increasing (in the domain u(X)).
- 11. Preferences \succeq on \mathbb{R}^L_+ are homothetic if $x \succeq y$ implies $\lambda x \succeq \lambda y$, for all $\lambda > 0$ (where $\lambda x = (\lambda x_1, ..., \lambda x_L)$). Function $f : \mathbb{R}^L_+ \to \mathbb{R}$ is homogenous (of degree 1) if $f(\lambda x) = \lambda f(x)$. Show that continuous function u represents cotinuous homothetic preferences if and only if u is homogenous.
- 12. Let preferences \succeq on \mathbb{R}^2_+ be of Leontieff form: $(x_1, x_2) \succeq (y_1, y_2)$ if $\min\{x_1, x_2\} \ge \min\{y_1, y_2\}$. Find a utility representation for these preferences. Identify the Marshallian demand function x(p, w) and the indirect utility function.