Lecture notes 4: Theory of production

Hannu Vartiainen HECER

Fall 2015

Hannu Vartiainen HECER Production

Producer theory

- Start with a single firm facing given prices
- Need to describe the technology of the firm
- **Exogenous**: prices
- Endogenous: output and input demands
- Aim to understand the optimal production decision of the firm
 - No attention to organizational nor stratgic aspects
 - Objective to have a model that can be transferred in it its pure form to the general equilibrium framework
- Key difference to the consumer model
 - no income effects
 - everything observable

Primitives:

- \blacksquare Firm with one production good in \mathbb{R}_+
- Input space \mathbb{R}^{K}
- The primitive of the model: **production function**

$$f:\mathbb{R}_+^K\to\mathbb{R}_+$$

describes the output/input combinations that are **technologically feasibe**

Axiom

Production function f is continuous, increasing, and quasiconcave

- By monotonicity, if $y \ge y'$, then $f(y) \ge f(y')$
- By quasiconcavity, the input requirement set $V(x) = \{y \in \mathbb{R}_+^K : f(y) \ge x\} \text{ is convex for all } x \in \mathbb{R}_+$
- Firm's production function can be represented by the production possibility set

$$Y = \{(y, x) \in \mathbb{R}_{+}^{K+1} : f(y) \ge x\}$$

- Continuous, increasing, and quasiconcave production function corresponds to a production possibility set Y that is
 - convex: if $(y, x), (y', x') \in Y$, then $\lambda(y, x) + (1 + \lambda)(y', x') \in Y$ for all λ
 - monotonic: $y \in V(x)$ and $y' \ge y$ imply $y \in V(x)$
 - closed

• With output price p > 0 and input prices $w = (w_1, ..., w_K)$, where $w_k > 0$ for all k, **profit** is

$$pf(y) - w \cdot y$$

for any $y \in \mathbb{R}^K_+$ (use the dot product notation $w \cdot y = \sum_k w_k y_k)$

The firm's objective is to maximize profits, i.e. to maximize the size of the owner's budget set The problem reduces to

$$\max_{y \in \mathbb{R}^{K-1}_+} pf(y) - w \cdot y \tag{1}$$

Letting y (p, w) denote the optimal choice(s) at prices (p, w),

$$\pi(p, w) = pf(y(p, w)) - w \cdot y(p, w)$$

is the **profit function** of the firm

Assuming differentiable f and an interior solution ($y_k > 0$ for all k = 1, ..., K), the FOC associated to the optimum y(p, w) is

$$rac{\partial f\left(y(p,w)
ight)}{\partial y_k} - rac{w_k}{p} = 0, \quad ext{ for all inputs } k$$

Marginal rate of technological substitution:

$$MRTS_{kj} = \frac{\partial f(y(p, w)) / \partial y_k}{\partial f(y(p, w)) / \partial y_j}, \quad \text{for all inputs } k, j$$

signifies the slope of the isoquant $\{y \in \mathbb{R}_+^{K-1} : f(y) = q\}$ at q = f(y(p, w))

At the optimum,

$$MRTS_{kj} = rac{w_k}{w_j}$$
, for all inputs k, j

- Suppose one observes the profit of the firm and prices, can we deduce the production function and the optimal production?
- Using the envelope argument:

Proposition (Hotelling's Lemma)

$$\frac{\partial \pi(p, w)}{\partial p} = f(y(p, w)) \frac{\partial \pi(p, w)}{\partial w_k} = -y_k(p, w), \text{ for all inputs } k$$

Hence the profit function π(p, w) is decreasing in w_k, increasing in p

• A function
$$g : \mathbb{R}^K \to \mathbb{R}_+$$
 is convex if $tg(x) + (1-t)g(x') \ge g(tx + (1-t)x')$ for all $x, x' \in \mathbb{R}^K$, for all $t \in (0, 1)$

Proposition

The profit function $\pi(p, w)$ is a convex in (p, w)

Proof.

First, for any (p, w), (p', w') and (p'', w''),

$$\pi(p, w) = pf(y(p, w)) - w \cdot y(p, w)$$

$$\geq pf(y(p'', w'')) - w \cdot y(p'', w'')$$

and

$$\begin{aligned} \pi(p',w') &= p'f(y(p',w')) - w' \cdot y(p',w') \\ &\geq p'f(y(p'',w'')) - w' \cdot y(p'',w'') \end{aligned}$$

Proof.

(cont.) Hence

$$t\pi(p,w)+(1-t)\pi(p',w')$$

$$\geq t[pf(y(p'', w'')) - w \cdot y(p'', w'')] \\ + (1-t)[p'f(y(p'', w'')) - w' \cdot y(p'', w'')]$$

$$= [tp + (1-t)p']f(y(p'', w'')) -[tw + (1-t)w'] \cdot y(p'', w'')$$

Since this holds for any (p'', w'') it holds in particular when (p'', w'') = t(p, w) + (1 - t)(p', w'), which gives the result.

• Using Hotelling's Lemma, by the convexity of π ,

$$\begin{array}{lll} \displaystyle \frac{\partial f(y(p,w))}{\partial p} & = & \displaystyle \frac{\partial^2 \pi(p,w)}{(\partial p)^2} \geq 0 \\ \\ \displaystyle \frac{\partial y_k(p,w)}{\partial w_k} & = & \displaystyle -\frac{\partial^2 \pi(p,w)}{(\partial w_k)^2} \leq 0, \quad \text{for all } k = 1, ..., K-1 \end{array}$$

Interpretation:

- If the price of an output increases, then the supply increases: "Law of Supply"
- If the price of an input increases, the demand for the input decreases: "Law of Input Demand"

Note that f(y(·, w)) defines firm's optimal output under any output price p, i.e. f(y(·, w)) is the firm's supply function
 Since

$$\pi(p,w) = \int_0^p \frac{\partial \pi(p',w)}{\partial p} dp' = \int_0^p f(y(p',w)) dp'$$

firm's profits $\pi(p, w)$ represented by the area between the output price axis and $f(y(\cdot, w))$, until p

For each quantity of output, q, find the least costly input combination that yields q:

$$\min_{\substack{y \in \mathbb{R}_{+}^{K-1}}} w \cdot y$$
s.t. $q = f(y)$

- Denote the solution by z (w, q), i.e. the conditional factor demand function
- The value function, c(w, q), is called the **cost function**

$$c(w,q) = w \cdot z(w,q)$$
.

• z(w, q) is completely analogous to h(p, u) in consumer theory and c(w, q) is analogous to e(p, u)

Proposition

The cost function c(w, q) is increasing in q, concave in w, increasing in p, and homogenous of degree one.

Proof.

We show that c is increasing in q. Note that c(w, q) minimizes the Lagrangian

$$\mathcal{L}(w,q) = w \cdot y - \lambda[f(y) - q].$$

Hence

$$c(w,q) = w \cdot z(w,q) - \lambda[f(z(w,q)) - q].$$

By the envelope theorem

$$rac{\partial c\left(w,q
ight)}{\partial q}=\lambda$$

Proof.

(cont.) Since, at the optimum,

$$w_{k} = \lambda \frac{\partial f(z(w,q))}{\partial y_{k}}$$

it follows that

$$\frac{\partial c(w,q)}{\partial q} = \left(\frac{\partial f(z(w,q))}{\partial y_k}\right)^{-1} w_k \ge 0$$

æ

...back to optimal production

- Given the notion of cost function, the problem of the firm simplies remarkably: just find the optimal level of output!
- That is, given p and w, the firm's objective is to solve

$$\max_{q\in\mathbb{R}_+}pq-c\left(w,q\right)$$

The first order condition for this is the familiar:

$$p = rac{\partial c (w, q)}{\partial q}$$

i.e., at the firm's optimum, the marginal cost equals the price
Thus the marginal cost curve ∂c (w, ·) /∂q defines the firm's inverse supply function

Since

$$pq-c(w,q) = \int_0^q \left(p - \frac{\partial c(w,q')}{\partial q}\right) dq'$$

we see that the area between p and the inverse supply curve reflects the firm's profit

Since $f(y(\cdot, w))$ the the supply function, we conclude that $p = \partial c (w, f(y(p, w))) / \partial q$, for all p: duality in production

Geometry of costs

- Assume that the firm has to invest K > 0 to operate in the market
- Sunk costs do not affect the optimal production (assuming that participating the market is profitable)
- Denote the average (minimum) costs of the firm from production q by

$$AC(q) = rac{K + c(w, q)}{q}$$

- Then AC(·) is decreasing whenever the marginal cost ∂c (w, q) /∂q is lower than AC(q) and increasing when ∂c (w, q) /∂q is higher than AC(q) => the curves cross at the minimum of AC(·)
- Unless the firm can operate at price p such that $p = \partial c(w, f(y(p, w))) / \partial q \ge AC(f(y(p, w)))$, it does not enter the market

- The utility function *u* only represents preferences ≿ and cannot be observed even in principle: multiple respresentations
- Production function f is a unique description of the technology and, in principle, observable
- Conclusion: Not only ordinal but also cardinal differences have meaning under f, e.g. concavity of f matters!