Lecture notes 4: Theory of production

Hannu Vartiainen HECER

Fall 2015

Producer theory

- Start with a single firm facing given prices

■ Need to describe the technology of the firm

- Exogenous: prices

■ Endogenous: output and input demands

- Aim to understand the optimal production decision of the firm
- No attention to organizational nor stratgic aspects
- Objective to have a model that can be transferred in it its pure form to the general equilibrium framework
- Key difference to the consumer model
- no income effects
- everything observable

Primitives:

■ Firm with one production good in \mathbb{R}_{+}

- Input space \mathbb{R}^{K}
- The primitive of the model: production function

$$
f: \mathbb{R}_{+}^{K} \rightarrow \mathbb{R}_{+}
$$

describes the output/input combinations that are technologically feasibe

Axiom

Production function f is continuous, increasing, and quasiconcave

- By monotonicity, if $y \geq y^{\prime}$, then $f(y) \geq f\left(y^{\prime}\right)$
- By quasiconcavity, the input requirement set $V(x)=\left\{y \in \mathbb{R}_{+}^{K}: f(y) \geq x\right\}$ is convex for all $x \in \mathbb{R}_{+}$
- Firm's production function can be represented by the production possibility set

$$
Y=\left\{(y, x) \in \mathbb{R}_{+}^{K+1}: f(y) \geq x\right\}
$$

- Continuous, increasing, and quasiconcave production function corresponds to a production possibility set Y that is
- convex: if $(y, x),\left(y^{\prime}, x^{\prime}\right) \in Y$, then $\lambda(y, x)+(1+\lambda)\left(y^{\prime}, x^{\prime}\right) \in Y$ for all λ
- monotonic: $y \in V(x)$ and $y^{\prime} \geq y$ imply $y \in V(x)$
- closed

Profit maximization problem

■ With output price $p>0$ and input prices $w=\left(w_{1}, \ldots, w_{K}\right)$, where $w_{k}>0$ for all k, profit is

$$
p f(y)-w \cdot y
$$

for any $y \in \mathbb{R}_{+}^{K}$ (use the dot product notation $\left.w \cdot y=\sum_{k} w_{k} y_{k}\right)$
■ The firm's objective is to maximize profits, i.e. to maximize the size of the owner's budget set

Optimal production

- The problem reduces to

$$
\begin{equation*}
\max _{y \in \mathbb{R}_{+}^{K-1}} p f(y)-w \cdot y \tag{1}
\end{equation*}
$$

- Letting $y(p, w)$ denote the optimal choice(s) at prices (p, w),

$$
\pi(p, w)=p f(y(p, w))-w \cdot y(p, w)
$$

is the profit function of the firm

- Assuming differentiable f and an interior solution ($y_{k}>0$ for all $k=1, \ldots, K$), the FOC associated to the optimum $y(p, w)$ is

$$
\frac{\partial f(y(p, w))}{\partial y_{k}}-\frac{w_{k}}{p}=0, \quad \text { for all inputs } k
$$

■ Marginal rate of technological substitution:

$$
M R T S_{k j}=\frac{\partial f(y(p, w)) / \partial y_{k}}{\partial f(y(p, w)) / \partial y_{j}}, \quad \text { for all inputs } k, j
$$

signifies the slope of the isoquant $\left\{y \in \mathbb{R}_{+}^{K-1}: f(y)=q\right\}$ at $q=f(y(p, w))$

- At the optimum,

$$
M R T S_{k j}=\frac{w_{k}}{w_{j}}, \quad \text { for all inputs } k, j
$$

- Suppose one observes the profit of the firm and prices, can we deduce the production function and the optimal production?
■ Using the envelope argument:

Proposition (Hotelling's Lemma)

$$
\begin{aligned}
& \frac{\partial \pi(p, w)}{\partial p}=f(y(p, w)) \\
& \frac{\partial \pi(p, w)}{\partial w_{k}}=-y_{k}(p, w), \quad \text { for all inputs } k
\end{aligned}
$$

- Hence the profit function $\pi(p, w)$ is decreasing in w_{k}, increasing in p

■ A function $g: \mathbb{R}^{K} \rightarrow \mathbb{R}_{+}$is convex if $\operatorname{tg}(x)+(1-t) g\left(x^{\prime}\right) \geq g\left(t x+(1-t) x^{\prime}\right)$ for all $x, x^{\prime} \in \mathbb{R}^{K}$, for all $t \in(0,1)$

Proposition

The profit function $\pi(p, w)$ is a convex in (p, w)

Proof.

First, for any $(p, w),\left(p^{\prime}, w^{\prime}\right)$ and $\left(p^{\prime \prime}, w^{\prime \prime}\right)$,

$$
\begin{aligned}
\pi(p, w) & =p f(y(p, w))-w \cdot y(p, w) \\
& \geq p f\left(y\left(p^{\prime \prime}, w^{\prime \prime}\right)\right)-w \cdot y\left(p^{\prime \prime}, w^{\prime \prime}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\pi\left(p^{\prime}, w^{\prime}\right) & =p^{\prime} f\left(y\left(p^{\prime}, w^{\prime}\right)\right)-w^{\prime} \cdot y\left(p^{\prime}, w^{\prime}\right) \\
& \geq p^{\prime} f\left(y\left(p^{\prime \prime}, w^{\prime \prime}\right)\right)-w^{\prime} \cdot y\left(p^{\prime \prime}, w^{\prime \prime}\right)
\end{aligned}
$$

Proof.

(cont.) Hence

$$
\begin{aligned}
& t \pi(p, w)+(1-t) \pi\left(p^{\prime}, w^{\prime}\right) \\
\geq & t\left[p f\left(y\left(p^{\prime \prime}, w^{\prime \prime}\right)\right)-w \cdot y\left(p^{\prime \prime}, w^{\prime \prime}\right)\right] \\
& +(1-t)\left[p^{\prime} f\left(y\left(p^{\prime \prime}, w^{\prime \prime}\right)\right)-w^{\prime} \cdot y\left(p^{\prime \prime}, w^{\prime \prime}\right)\right] \\
= & {\left[t p+(1-t) p^{\prime}\right] f\left(y\left(p^{\prime \prime}, w^{\prime \prime}\right)\right) } \\
& -\left[t w+(1-t) w^{\prime}\right] \cdot y\left(p^{\prime \prime}, w^{\prime \prime}\right)
\end{aligned}
$$

Since this holds for any $\left(p^{\prime \prime}, w^{\prime \prime}\right)$ it holds in particular when $\left(p^{\prime \prime}, w^{\prime \prime}\right)=t(p, w)+(1-t)\left(p^{\prime}, w^{\prime}\right)$, which gives the result.

■ Using Hotelling's Lemma, by the convexity of π,

$$
\begin{aligned}
\frac{\partial f(y(p, w))}{\partial p} & =\frac{\partial^{2} \pi(p, w)}{(\partial p)^{2}} \geq 0 \\
\frac{\partial y_{k}(p, w)}{\partial w_{k}} & =-\frac{\partial^{2} \pi(p, w)}{\left(\partial w_{k}\right)^{2}} \leq 0, \quad \text { for all } k=1, \ldots, K-1
\end{aligned}
$$

- Interpretation:
- If the price of an output increases, then the supply increases: "Law of Supply"
- If the price of an input increases, the demand for the input decreases: "Law of Input Demand"

■ Note that $f(y(\cdot, w))$ defines firm's optimal output under any output price p, i.e. $f(y(\cdot, w))$ is the firm's supply function

- Since

$$
\pi(p, w)=\int_{0}^{p} \frac{\partial \pi\left(p^{\prime}, w\right)}{\partial p} d p^{\prime}=\int_{0}^{p} f\left(y\left(p^{\prime}, w\right)\right) d p^{\prime}
$$

firm's profits $\pi(p, w)$ represented by the area between the output price axis and $f(y(\cdot, w))$, until p

Cost minimization

■ For each quantity of output, q, find the least costly input combination that yields q :

$$
\begin{aligned}
& \min _{y \in \mathbb{R}_{+}^{K-1}} w \cdot y \\
& \text { s.t. } q=f(y)
\end{aligned}
$$

■ Denote the solution by $z(w, q)$, i.e. the conditional factor demand function

- The value function, $c(w, q)$, is called the cost function

$$
c(w, q)=w \cdot z(w, q)
$$

■ $z(w, q)$ is completely analogous to $h(p, u)$ in consumer theory and $c(w, q)$ is analogous to $e(p, u)$

Proposition

The cost function $c(w, q)$ is increasing in q, concave in w, increasing in p, and homogenous of degree one.

Proof.

We show that c is increasing in q. Note that $c(w, q)$ minimizes the Lagrangian

$$
\mathcal{L}(w, q)=w \cdot y-\lambda[f(y)-q]
$$

Hence

$$
c(w, q)=w \cdot z(w, q)-\lambda[f(z(w, q))-q]
$$

By the envelope theorem

$$
\frac{\partial c(w, q)}{\partial q}=\lambda
$$

Proof.

(cont.) Since, at the optimum,

$$
w_{k}=\lambda \frac{\partial f(z(w, q))}{\partial y_{k}}
$$

it follows that

$$
\frac{\partial c(w, q)}{\partial q}=\left(\frac{\partial f(z(w, q))}{\partial y_{k}}\right)^{-1} w_{k} \geq 0
$$

...back to optimal production

- Given the notion of cost function, the problem of the firm simplies remarkably: just find the optimal level of output!
- That is, given p and w, the firm's objective is to solve

$$
\max _{q \in \mathbb{R}_{+}} p q-c(w, q)
$$

- The first order condition for this is the familiar:

$$
p=\frac{\partial c(w, q)}{\partial q}
$$

i.e., at the firm's optimum, the marginal cost equals the price

- Thus the marginal cost curve $\partial c(w, \cdot) / \partial q$ defines the firm's inverse supply function
- Since

$$
p q-c(w, q)=\int_{0}^{q}\left(p-\frac{\partial c\left(w, q^{\prime}\right)}{\partial q}\right) d q^{\prime}
$$

we see that the area between p and the inverse supply curve reflects the firm's profit
■ Since $f(y(\cdot, w))$ the the supply function, we conclude that $p=\partial c(w, f(y(p, w))) / \partial q$, for all p : duality in production

Geometry of costs

- Assume that the firm has to invest $K>0$ to operate in the market
- Sunk costs do not affect the optimal production (assuming that participating the market is profitable)
- Denote the average (minimum) costs of the firm from production q by

$$
A C(q)=\frac{K+c(w, q)}{q}
$$

- Then $A C(\cdot)$ is decreasing whenever the marginal cost $\partial c(w, q) / \partial q$ is lower than $A C(q)$ and increasing when $\partial c(w, q) / \partial q$ is higher than $A C(q)=>$ the curves cross at the minimum of $A C(\cdot)$
- Unless the firm can operate at price p such that $p=\partial c(w, f(y(p, w))) / \partial q \geq A C(f(y(p, w)))$, it does not enter the market

Difference between consumer and producer theory:

- The utility function u only represents preferences \succsim and cannot be observed even in principle: multiple respresentations
- Production function f is a unique description of the technology and, in principle, observable
- Conclusion: Not only ordinal but also cardinal differences have meaning under f, e.g. concavity of f matters!

