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Producer theory

Start with a single firm facing given prices

Need to describe the technology of the firm

Exogenous: prices
Endogenous: output and input demands
Aim to understand the optimal production decision of the firm

No attention to organizational nor stratgic aspects
Objective to have a model that can be transferred in it its pure
form to the general equilibrium framework

Key difference to the consumer model

no income effects
everything observable
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Primitives:

Firm with one production good in R+

Input space RK

The primitive of the model: production function

f : RK
+ → R+

describes the output/input combinations that are
technologically feasibe
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Axiom

Production function f is continuous, increasing, and quasiconcave

By monotonicity, if y ≥ y ′, then f (y) ≥ f (y ′)
By quasiconcavity, the input requirement set
V (x) = {y ∈ RK

+ : f (y) ≥ x} is convex for all x ∈ R+

Firm’s production function can be represented by the
production possibility set

Y = {(y , x) ∈ RK+1
+ : f (y) ≥ x}

Continuous, increasing, and quasiconcave production function
corresponds to a production possibility set Y that is

convex: if (y , x), (y ′, x ′) ∈ Y , then
λ(y , x) + (1+ λ)(y ′, x ′) ∈ Y for all λ
monotonic: y ∈ V (x) and y ′ ≥ y imply y ∈ V (x)
closed
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Profit maximization problem

With output price p > 0 and input prices w = (w1, ...,wK ),
where wk > 0 for all k, profit is

pf (y)− w · y

for any y ∈ RK
+ (use the dot product notation

w · y = ∑k wkyk )

The firm’s objective is to maximize profits, i.e. to maximize
the size of the owner’s budget set
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Optimal production

The problem reduces to

max
y∈RK−1

+

pf (y)− w · y (1)

Letting y (p,w) denote the optimal choice(s) at prices (p,w),

π(p,w) = pf (y(p,w))− w · y(p,w)

is the profit function of the firm
Assuming differentiable f and an interior solution (yk > 0 for
all k = 1, ..,K ), the FOC associated to the optimum y(p,w)
is

∂f (y(p,w))
∂yk

− wk
p
= 0, for all inputs k
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Marginal rate of technological substitution:

MRTSkj =
∂f (y(p,w)) /∂yk
∂f (y(p,w)) /∂yj

, for all inputs k, j

signifies the slope of the isoquant {y ∈ RK−1
+ : f (y) = q} at

q = f (y(p,w))

At the optimum,

MRTSkj =
wk
wj
, for all inputs k, j
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Suppose one observes the profit of the firm and prices, can we
deduce the production function and the optimal production?

Using the envelope argument:

Proposition (Hotelling’s Lemma)

∂π(p,w)
∂p

= f (y(p,w))

∂π(p,w)
∂wk

= −yk (p,w), for all inputs k

Hence the profit function π(p,w) is decreasing in wk ,
increasing in p
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A function g : RK → R+ is convex if
tg(x) + (1− t)g(x ′) ≥ g(tx + (1− t)x ′) for all x , x ′ ∈ RK ,
for all t ∈ (0, 1)

Proposition

The profit function π(p,w) is a convex in (p,w)

Proof.

First, for any (p,w), (p′,w ′) and (p′′,w ′′),

π(p,w) = pf (y(p,w))− w · y(p,w)
≥ pf

(
y(p′′,w ′′)

)
− w · y(p′′,w ′′)

and

π(p′,w ′) = p′f
(
y(p′,w ′)

)
− w ′ · y(p′,w ′)

≥ p′f
(
y(p′′,w ′′)

)
− w ′ · y(p′′,w ′′)
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Proof.

(cont.) Hence

tπ(p,w) + (1− t)π(p′,w ′)

≥ t[pf
(
y(p′′,w ′′)

)
− w · y(p′′,w ′′)]

+(1− t)[p′f
(
y(p′′,w ′′)

)
− w ′ · y(p′′,w ′′)]

= [tp + (1− t)p′]f
(
y(p′′,w ′′)

)
−[tw + (1− t)w ′] · y(p′′,w ′′)

Since this holds for any (p′′,w ′′) it holds in particular when
(p′′,w ′′) = t(p,w) + (1− t)(p′,w ′), which gives the result.
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Using Hotelling’s Lemma, by the convexity of π,

∂f (y(p,w))
∂p

=
∂2π(p,w)
(∂p)2

≥ 0

∂yk (p,w)
∂wk

= −∂2π(p,w)
(∂wk )2

≤ 0, for all k = 1, ...,K − 1

Interpretation:

If the price of an output increases, then the supply increases:
"Law of Supply"
If the price of an input increases, the demand for the input
decreases: "Law of Input Demand"
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Note that f (y(·,w)) defines firm’s optimal output under any
output price p, i.e. f (y(·,w)) is the firm’s supply function
Since

π(p,w) =
∫ p

0

∂π(p′,w)
∂p

dp′ =
∫ p

0
f (y(p′,w))dp′

firm’s profits π(p,w) represented by the area between the
output price axis and f (y(·,w)), until p
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Cost minimization

For each quantity of output, q, find the least costly input
combination that yields q:

min
y∈RK−1

+

w · y

s.t. q = f (y)

Denote the solution by z (w , q) , i.e. the conditional factor
demand function
The value function, c (w , q), is called the cost function

c (w , q) = w · z (w , q) .

z (w , q) is completely analogous to h (p, u) in consumer
theory and c (w , q) is analogous to e (p, u)
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Proposition

The cost function c (w , q) is increasing in q, concave in w ,
increasing in p, and homogenous of degree one.

Proof.

We show that c is increasing in q. Note that c (w , q) minimizes
the Lagrangian

L(w , q) = w · y − λ[f (y)− q].

Hence
c (w , q) = w · z (w , q)− λ[f (z (w , q))− q].

By the envelope theorem

∂c (w , q)
∂q

= λ
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Proof.

(cont.) Since, at the optimum,

wk = λ
∂f (z (w , q))

∂yk

it follows that

∂c (w , q)
∂q

=

(
∂f (z (w , q))

∂yk

)−1
wk ≥ 0
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...back to optimal production

Given the notion of cost function, the problem of the firm
simplies remarkably: just find the optimal level of output!

That is, given p and w , the firm’s objective is to solve

max
q∈R+

pq − c (w , q)

The first order condition for this is the familiar:

p =
∂c (w , q)

∂q

i.e., at the firm’s optimum, the marginal cost equals the price
Thus the marginal cost curve ∂c (w , ·) /∂q defines the firm’s
inverse supply function
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Since

pq − c (w , q) =
∫ q

0

(
p − ∂c (w , q′)

∂q

)
dq′

we see that the area between p and the inverse supply curve
reflects the firm’s profit

Since f (y(·,w)) the the supply function, we conclude that
p = ∂c (w , f (y(p,w))) /∂q, for all p: duality in production
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Geometry of costs

Assume that the firm has to invest K > 0 to operate in the
market
Sunk costs do not affect the optimal production (assuming
that participating the market is profitable)
Denote the average (minimum) costs of the firm from
production q by

AC (q) =
K + c (w , q)

q

Then AC (·) is decreasing whenever the marginal cost
∂c (w , q) /∂q is lower than AC (q) and increasing when
∂c (w , q) /∂q is higher than AC (q) => the curves cross at
the minimum of AC (·)
Unless the firm can operate at price p such that
p = ∂c (w , f (y(p,w))) /∂q ≥ AC (f (y(p,w))), it does not
enter the market
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Difference between consumer and producer theory:

The utility function u only represents preferences % and
cannot be observed even in principle: multiple respresentations

Production function f is a unique description of the
technology and, in principle, observable

Conclusion: Not only ordinal but also cardinal differences have
meaning under f , e.g. concavity of f matters!
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