Lecture notes 3a: Optimal consumption, duality, and welfare

Hannu Vartiainen HECER

Fall 2015

Hannu Vartiainen HECER Optimal consumption, duality, and welfare

- Our next task is to understand the properties of the optimal consumption
- Let consumer preferences ≿ be *rational*, *monotonic*, *strictly convex*, *and continuous*
 - There is a continuous utility function u that represents \succeq
 - There is a **unique** optimizer in *B*(*p*, *w*), referred as the **Marshallian demand** *x*(*p*, *w*) under (*p*, *w*)
- To analyse the properties of x(p, w), it useful to set up a formal optimizing programme through which x(p, w) is generated

Consumer's problem can be represented as a constrained utility maximization problem

$$\max_{x\in B(p,w)}u(x).$$

or, equivalently,

$$\max_{x \ge 0} u(x)$$

s.t. $\sum_{\ell=1}^{L} p_{\ell} x_{\ell} \le w$.

- The solution x(p, w) can now be obtained via standard techniques
- Construct a Lagrangean

$$\mathcal{L}(\mathsf{x},\lambda) = u\left(\mathsf{x}
ight) - \lambda\left(\sum_{\ell=1}^{L} p_{\ell} \mathsf{x}_{\ell} - \mathsf{w}
ight)$$
 ,

where $\lambda \in \mathbb{R}$ is the Lagrange multiplier

- Let x (p, w) := x* > 0 maximize the Lagrangean (assuming that u is differentiable)
- The first order conditions (FOC) are

$$\begin{array}{rcl} \displaystyle \frac{\partial u\left(x^*\right)}{\partial x_\ell} - \lambda p_\ell &=& 0, \ \text{for all} \ \ell \\ \displaystyle \sum_{\ell=1}^L p_\ell x_\ell^* - w &=& 0 \end{array}$$

Thus

$$\frac{\partial u(x^*) / \partial x_{\ell}}{\partial u(x^*) / \partial x_k} = \frac{p_{\ell}}{p_k}$$

■ The ratio p_ℓ / p_k is the marginal rate of substitution between goods ℓ and k at x* : the rate at which x_ℓ should increase when x_k decreases (or vice versa) for the agent's utility to remain intact

Let preferences be charcacterized by a Cobb-Douglas utility function

$$u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$$
, where $\alpha \in (0, 1)$

We derive the Marshallian demand x_1^* , x_2^* . First order conditions for optimality:

$$\alpha \left(\frac{x_2^*}{x_1^*}\right)^{1-\alpha} - \lambda p_1 = 0$$

(1-\alpha) $\left(\frac{x_2^*}{x_1^*}\right)^{-\alpha} - \lambda p_2 = 0$
 $p_1 x_1^* + p_2 x_2^* = w$

We have

$$\frac{x_2^*}{x_1^*} = \frac{(1-\alpha)p_1}{\alpha p_2}$$

・ 戸 と ・ ヨ と ・ モ と …

э

(cont.) and solving for x_1^* and x_2^*

$$x_1^* = rac{lpha w}{
ho_1}, \,\, x_2^* = rac{(1-lpha)w}{
ho_2}$$

æ

∃ >

▶ < ≣ ▶

- We are mainly interested in understanding the effect of price changes on consumption and welfare
- Given prices p and income w, define the consumer's indirect utility function by

$$v\left(p,w
ight) =u\left(x\left(p,w
ight)
ight)$$
 ,

where x(p, w) is the Marshallian demand under (p, w)

What are the properties of v (p, w) implied by utility maximization?

- Let u represent monotonic and continuous preferences \succsim
- Then the indirect utility function $v(\cdot, \cdot)$ is:

i homogenous of degree 0 (v(p, w) = v(tp, tw) for all t > 0)

- ii strictly increasing in w, strictly decreasing in p_ℓ
- iii continuous
- An important tool in analysing the indirect utility (or any value function resulting from maximization) is the **envelope theorem:** only the **direct** effect of a parameter change matters when evaluating the effects of changes in the environment

 To see this, recall first that by the FOC of the associated Lagrangean,

$$\frac{\partial}{\partial x_\ell} \mathcal{L}(x(p,w),\lambda) = \frac{\partial u\left(x(p,w)\right)}{\partial x_\ell} - \lambda p_\ell = \mathsf{0}, \text{ for all } \ell$$

Thus

$$\frac{\partial v(p, w)}{\partial p_{\ell}} = \frac{\partial}{\partial p_{\ell}} \mathcal{L}(x(p, w), \lambda)$$

$$= \frac{\partial}{\partial p_{\ell}} [u(x(p, w)) - \lambda (\sum_{\ell} p_{\ell} x_{\ell}(p, w) - w)]$$

$$= \sum_{k} \frac{\partial x_{k}(p, w)}{\partial p_{\ell}} \left(\frac{\partial u(x(p, w))}{\partial x_{k}} - \lambda p_{k} \right) - \lambda x_{\ell}(p, w)$$

$$= -\lambda x_{\ell}(p, w)$$

where the third equality follows by the chain rule and the last one from the FOC of the Lagrangean

A B M A B M

э

Similarly,

$$\frac{\partial v(p, w)}{\partial w} = \frac{\partial}{\partial w} \mathcal{L}(x(p, w), \lambda)$$

$$= \frac{\partial}{\partial w} [u(x(p, w)) - \lambda (\sum_{\ell} p_{\ell} x_{\ell}(p, w) - w)]$$

$$= \sum_{\ell} \frac{\partial x_{\ell}(p, w)}{\partial w} \left(\frac{\partial u(x(p, w))}{\partial x_{\ell}} - \lambda p_{k} \right) + \lambda$$

$$= \lambda$$

where the second equality follows by the chain rule and the last one from the FOC of the Lagrangean

Thus Lagrange multiplier λ gives the marginal (shadow) value of relaxing the constraint, i.e. the marginal value of wealth w

$$rac{\partial v\left(p,w
ight) }{\partial p_{\ell}}=-\lambda x_{\ell}\left(p,w
ight) \hspace{0.5cm} ext{ and } \hspace{0.5cm} rac{\partial v\left(p,w
ight) }{\partial w}=\lambda$$

we have:

Proposition (Roy's Identity)

The Marshallian demand x(p, w) can be recovered from the indirect utility function v(p, w) by

$$x_{\ell}(p,w) = -rac{\partial v(p,w)/\partial p_{\ell}}{\partial v(p,w)/\partial w}$$

(*) *) *) *)

(cont.) With Cobb-Douglas utility function $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, the Marshallian demand is

$$x_1(p, w) = rac{lpha w}{p_1}, \ x_2(p, w) = rac{(1-lpha)w}{p_2}$$

The indirect utlity is

$$\begin{aligned} \mathbf{v}(\mathbf{p}, \mathbf{w}) &= x_1(\mathbf{p}, \mathbf{w})^{\alpha} x_2(\mathbf{p}, \mathbf{w})^{1-\alpha} \\ &= \left(\frac{\alpha w}{p_1}\right)^{\alpha} \left(\frac{(1-\alpha)w}{p_2}\right)^{1-\alpha} \\ &= w \left(\frac{\alpha}{p_1}\right)^{\alpha} \left(\frac{1-\alpha}{p_2}\right)^{1-\alpha} \end{aligned}$$

伺 ト く ヨ ト く ヨ ト

э

With quasilinear utility function u(x, m) = v(x) + m, v increasing, differentiable and concave, the optimization problem is

$$\max v(x) + m$$

s.t. $\bar{p}x + m \leq \bar{v}$

where \bar{p} is the price ratio p_x/p_m and \bar{w} is the ratio w/p_x . Marshallian demand depends only on \bar{p} and \bar{w} and hence we may denote it by $x(\bar{p}, \bar{w}), m(\bar{p}, \bar{w})$ (assume > 0). It satisfies

$$v'(x(\bar{p},\bar{w})) = \bar{p}$$

$$\bar{p}x(\bar{p},\bar{w}) + m(\bar{p},\bar{w}) = \bar{w}$$

Since v is a concave function, $x(\bar{p}, \bar{w})$ is a decreasing function of \bar{p} (why?)

Duality

- The problem with the utility function and the indirect utility functions is that they are not observable, only x, p and w are
- An important property called duality of consumption transforms the problem into language of the observables, and hence allows us to make emprically testable predictions
- Given the utility function u(·), denote by h(p, ū) the choice that solves the expedinture minimizing problem subject to the utility being at least ū (a number):

$$\min_{x_{\ell} \ge 0} \sum_{\ell=1}^{L} p_{\ell} x_{\ell}$$

s.t. $u(x) \ge \bar{u}$

• Notice that even though the feasible set is not bounded, the problem has a solution when $p \in \mathbb{R}_{++}^{L}$

- Function h (p, ū) is called the Hicksian or compensated demand: it evaluaes the effects of prices on consumption as if the consumer is compensated the income needed to stay in the same indifference curve
- Denote the value function under the minimizer by $e(p, \bar{u})$, the **expenditure function**

$$e(p, \bar{u}) = \sum_{\ell=1}^{L} p_{\ell} h_{\ell}(p, \bar{u})$$

Proposition

The Hicksian demand function satisfies compensated law of demand: $(p_{\ell} - p'_{\ell})(h_{\ell}(p', \bar{u}) - h_{\ell}(p', \bar{u})) \leq 0$, for all ℓ , for any price vectors p, p'.

 Since e (p, ū) minimizes costs under the constraint that utility *ū* is generated, and since *ū* can be generated under w such that *ū* = v (p, w), we have

$$w \ge e(p, v(p, w))$$

Similarly,

$$\bar{u} \leq v(p, e(p, \bar{u}))$$

The duality between the indirect utility function v(·, ·) and the expenditure function e(·, ·) manifests itself in the following parity:

Proposition

Let continuous, monotonic, and strictly convex preferences be represented by the utility function u. For any price vector $p \in \mathbb{R}_{++}^{L}$,

$$w=e\left(\textit{p},\textit{v}\left(\textit{p},\textit{w}\right)\right) \text{ and } \bar{\textit{u}}=\textit{v}\left(\textit{p},\textit{e}\left(\textit{p},\bar{\textit{u}}\right)\right)$$

Proof.

Suppose that w > e(p, v(p, w)). Then there is a less costly way to attain utility u = v(p, w) than x(p, w), say y. Thus $\sum_{\ell} p_{\ell} y_{\ell} < w$. But by strict convexity of preferences, $\lambda x(p, w) + (1 - \lambda)y \succ x(p, w)$, for all $\lambda \in (0, 1)$. Moreover, since

$$\lambda \sum_\ell p_\ell x_\ell(p,w) \leq \lambda w$$
 and $(1-\lambda) \sum_\ell p_\ell y_\ell < (1-\lambda) w$

also

$$\sum_{\ell} p_{\ell} [\lambda x_{\ell} (p, w) + (1 - \lambda) y_{\ell}] < w$$

and hence $\lambda x (p, w) + (1 - \lambda)y$ belongs to the budget set. But this contradicts the assumption that x (p, w) is an optimal choice. Similar argument rules out $\bar{u} < v (p, e(p, \bar{u}))$.

- By strict convexity, the Marshallian demand x(p, w) and the Hicksian demand h(p, w) are uniquely defined at each (p, w)
- Thus we also obtain a parity between the Marshallian demand function x(·, ·) and the Hicksian demand function h(·, ·)

$$x\left(extsf{p}, extsf{w}
ight) =h\left(extsf{p}, extsf{v}\left(extsf{p}, extsf{w}
ight)
ight)$$
 and $h\left(extsf{p}, extsf{u}
ight) =x\left(extsf{p}, extsf{e}\left(extsf{p}, extsf{u}
ight)
ight)$

The underlying force behind the duality is that any two disjoint convex sets can be separated by a hyperplane => a minimizer of a linear function in one set is at least a maximizer of the other set A counterpart of Roy's Identity can now be stated in the context of expedinture functions and Hicksian demand functions

Proposition (Shephard's Lemma)

The Hicksian demand h(p, w) can be recovered from the expenditure function $e(p, \bar{u})$ by

$$h_{\ell}\left(p,ar{u}
ight) =rac{\partial e\left(p,ar{u}
ight) }{\partial p_{\ell}}$$

• To see this, observe that $e(p, \bar{u})$ is the value of the Lagrangean

$$\mathcal{L}(x,\lambda) = \sum_{\ell=1}^{L} p_{\ell} x_{\ell} - \lambda [u(x) - \bar{u}]$$

at the minimizer $x = h(p, \bar{u})$

By FOC,

$$\begin{aligned} p_{\ell} &- \lambda \frac{\partial u \left(h \left(p, \bar{u} \right) \right)}{\partial x_{\ell}} &= 0, \text{ for all } \ell \\ u (h \left(p, \bar{u} \right) \right) - u &= 0 \end{aligned}$$

• • = • • = •

э

Thus, using again the envelope argument,

$$\begin{aligned} \frac{\partial e\left(p,w\right)}{\partial p_{\ell}} &= \frac{\partial \mathcal{L}(h\left(p,\bar{u}\right),\lambda)}{\partial p_{\ell}} \\ &= \frac{\partial \left\{\sum_{k=1}^{L} p_{k} h_{k}\left(p,\bar{u}\right) - \lambda\left[u(h\left(p,\bar{u}\right)) - \bar{u}\right]\right\}}{\partial p_{\ell}} \\ &= h_{\ell}\left(p,\bar{u}\right) + \sum_{k=1}^{L} \frac{\partial h_{k}\left(p,\bar{u}\right)}{\partial p_{\ell}} \left(p_{k} - \lambda \frac{\partial u\left(h\left(p,\bar{u}\right)\right)}{\partial x_{k}}\right) \\ &= h_{\ell}\left(p,\bar{u}\right) \end{aligned}$$

▶ < ∃ ▶</p>

- ∢ ≣ ▶

æ

(cont.2) With Cobb-Douglas utility function $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, the FOC for the Hicksian demand h^* is

$$p_{1} - \lambda \alpha \left(\frac{x_{2}^{*}}{x_{1}^{*}}\right)^{1-\alpha} = 0$$

$$p_{2} - \lambda (1-\alpha) \left(\frac{x_{2}^{*}}{x_{1}^{*}}\right)^{-\alpha} = 0$$

$$(x_{1}^{*})^{\alpha} (x_{2}^{*})^{1-\alpha} - \bar{u} = 0$$

We have

$$\frac{h_2^*}{h_1^*} = \frac{(1-\alpha)p_1}{\alpha p_2}$$

and solving for x_1^* and x_2^*

$$h_1^* = \left(\frac{\alpha p_2}{(1-\alpha)p_1}\right)^{1-\alpha} \bar{u}, \ h_2^* = \left(\frac{(1-\alpha)p_1}{\alpha p_2}\right)^{\alpha} \bar{u}$$

(cont.3) With Hicksian demand

$$h_1(p, \bar{u}) = \left(\frac{\alpha p_2}{(1-\alpha)p_1}\right)^{1-\alpha} \bar{u}, \ h_2(p, \bar{u}) = \left(\frac{(1-\alpha)p_1}{\alpha p_2}\right)^{\alpha} \bar{u}$$

The expedinture function

$$e(p, \bar{u}) = p_1 \left(\frac{\alpha p_2}{(1-\alpha)p_1}\right)^{1-\alpha} \bar{u} + p_2 \left(\frac{(1-\alpha)p_1}{\alpha p_2}\right)^{\alpha} \bar{u} \\ \left[\left(\frac{\alpha}{1-\alpha}\right)^{1-\alpha} \left(\frac{p_2^{1-\alpha}}{p_1^{-\alpha}}\right) + \left(\frac{(1-\alpha)}{\alpha}\right)^{\alpha} \left(\frac{p_1^{\alpha}}{p_2^{1-\alpha}}\right)\right] \bar{u} \\ = \left(\frac{p_1}{\alpha}\right)^{\alpha} \left(\frac{p_2}{1-\alpha}\right)^{1-\alpha} \bar{u}$$

æ

個人 くほと くほと

An interesting feature of the expedinture function is that it is concave in p

Proposition

For any prices p and p', and for any $\lambda \in (0, 1)$,

$$\lambda e(p, \bar{u}) + (1 - \lambda) e(p', \bar{u}) \leq e(\lambda p + (1 - \lambda)p', \bar{u})$$

In particular, concavity implies that $\partial^2 e / (\partial p_\ell)^2 \leq 0$ for all ℓ

Proof.

Since $h(p, \bar{u})$ minimizes costs to achieve \bar{u} under p and $h(p', \bar{u})$ minimizes costs to achieve \bar{u} under p' we have, for any p'',

$$egin{array}{ll} \sum\limits_\ell p_\ell h_\ell(p,ar u) &\leq & \sum\limits_\ell p_\ell h_\ell(p'',ar u) \ \sum\limits_\ell p'_\ell h_\ell(p',ar u) &\leq & \sum\limits_\ell p'_\ell h_\ell(p'',ar u) \end{array}$$

Since the inequalities hold for any p'', they hold particular for $p'' = \lambda p + (1 - \lambda)p'$. Multiplying the first inequality with λ and the second with $(1 - \lambda)$ and summing side by side,

Proof.

(cont.)

$$egin{aligned} &\lambda\sum\limits_\ell p_\ell h_\ell(p,ar u) + (1-\lambda)\sum\limits_\ell p_\ell' arkappa_\ell(p',ar u) \ &\leq &\sum\limits_\ell (\lambda p_\ell + (1-\lambda)p_\ell') h_\ell (\lambda p + (1-\lambda)p',ar u) \end{aligned}$$

Since $\sum_{\ell} p_{\ell} h_{\ell}(p, \bar{u}) = e(p, \bar{u})$ etc., the result follows.

I ≡ →

문 문